Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice.

Identifieur interne : 000550 ( Main/Exploration ); précédent : 000549; suivant : 000551

Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice.

Auteurs : D A Zamora [États-Unis] ; K P Downs [États-Unis] ; S L Ullevig [États-Unis] ; S. Tavakoli [États-Unis] ; H S Kim [États-Unis] ; M. Qiao [États-Unis] ; D R Greaves [Royaume-Uni] ; R. Asmis [États-Unis]

Source :

RBID : pubmed:25966442

Descripteurs français

English descriptors

Abstract

AIMS

Reactive oxygen species (ROS)-mediated formation of mixed disulfides between critical cysteine residues in proteins and glutathione, a process referred to as protein S-glutathionylation, can lead to loss of enzymatic activity and protein degradation. Since mitochondria are a major source of ROS and a number of their proteins are susceptible to protein-S-glutathionylation, we examined if overexpression of mitochondrial thioltranferase glutaredoxin 2a (Grx2a) in macrophages of dyslipidemic atherosclerosis-prone mice would prevent mitochondrial dysfunction and protect against atherosclerotic lesion formation.

METHODS AND RESULTS

We generated transgenic Grx2aMac(LDLR-/-) mice, which overexpress Grx2a as an EGFP fusion protein under the control of the macrophage-specific CD68 promoter. Transgenic mice and wild type siblings were fed a high fat diet for 14 weeks at which time we assessed mitochondrial bioenergetic function in peritoneal macrophages and atherosclerotic lesion formation. Flow cytometry and Western blot analysis demonstrated transgene expression in blood monocytes and peritoneal macrophages isolated from Grx2aMac(LDLR-/-) mice, and fluorescence confocal microscopy studies confirmed that Grx2a expression was restricted to the mitochondria of monocytic cells. Live-cell bioenergetic measurements revealed impaired mitochondrial ATP turnover in macrophages isolated from Grx2aMac(LDLR-/-) mice compared to macrophages isolated from non-transgenic mice. However, despite impaired mitochondrial function in macrophages of Grx2aMac(LDLR-/-) mice, we observed no significant difference in the severity of atherosclerosis between wildtype and Grx2aMac(LDLR-/-) mice.

CONCLUSION

Our findings suggest that increasing Grx2a activity in macrophage mitochondria disrupts mitochondrial respiration and ATP production, but without affecting the proatherogenic potential of macrophages. Our data suggest that macrophages are resistant against moderate mitochondrial dysfunction and rely on alternative pathways for ATP synthesis to support the energetic requirements.


DOI: 10.1016/j.atherosclerosis.2015.04.805
PubMed: 25966442
PubMed Central: PMC4466159


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice.</title>
<author>
<name sortKey="Zamora, D A" sort="Zamora, D A" uniqKey="Zamora D" first="D A" last="Zamora">D A Zamora</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Trinity University, San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Trinity University, San Antonio</wicri:regionArea>
<wicri:noRegion>San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Downs, K P" sort="Downs, K P" uniqKey="Downs K" first="K P" last="Downs">K P Downs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio</wicri:regionArea>
<wicri:noRegion>University of Texas Health Science Center at San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ullevig, S L" sort="Ullevig, S L" uniqKey="Ullevig S" first="S L" last="Ullevig">S L Ullevig</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio</wicri:regionArea>
<wicri:noRegion>San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tavakoli, S" sort="Tavakoli, S" uniqKey="Tavakoli S" first="S" last="Tavakoli">S. Tavakoli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio</wicri:regionArea>
<wicri:noRegion>San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, H S" sort="Kim, H S" uniqKey="Kim H" first="H S" last="Kim">H S Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio</wicri:regionArea>
<wicri:noRegion>University of Texas Health Science Center at San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qiao, M" sort="Qiao, M" uniqKey="Qiao M" first="M" last="Qiao">M. Qiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio</wicri:regionArea>
<wicri:noRegion>University of Texas Health Science Center at San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Greaves, D R" sort="Greaves, D R" uniqKey="Greaves D" first="D R" last="Greaves">D R Greaves</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Sir William Dunn School of Pathology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Asmis, R" sort="Asmis, R" uniqKey="Asmis R" first="R" last="Asmis">R. Asmis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, USA. Electronic address: asmis@uthscsa.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio</wicri:regionArea>
<wicri:noRegion>University of Texas Health Science Center at San Antonio</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25966442</idno>
<idno type="pmid">25966442</idno>
<idno type="doi">10.1016/j.atherosclerosis.2015.04.805</idno>
<idno type="pmc">PMC4466159</idno>
<idno type="wicri:Area/Main/Corpus">000530</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000530</idno>
<idno type="wicri:Area/Main/Curation">000530</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000530</idno>
<idno type="wicri:Area/Main/Exploration">000530</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice.</title>
<author>
<name sortKey="Zamora, D A" sort="Zamora, D A" uniqKey="Zamora D" first="D A" last="Zamora">D A Zamora</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Trinity University, San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, Trinity University, San Antonio</wicri:regionArea>
<wicri:noRegion>San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Downs, K P" sort="Downs, K P" uniqKey="Downs K" first="K P" last="Downs">K P Downs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio</wicri:regionArea>
<wicri:noRegion>University of Texas Health Science Center at San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ullevig, S L" sort="Ullevig, S L" uniqKey="Ullevig S" first="S L" last="Ullevig">S L Ullevig</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio</wicri:regionArea>
<wicri:noRegion>San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tavakoli, S" sort="Tavakoli, S" uniqKey="Tavakoli S" first="S" last="Tavakoli">S. Tavakoli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio</wicri:regionArea>
<wicri:noRegion>San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, H S" sort="Kim, H S" uniqKey="Kim H" first="H S" last="Kim">H S Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio</wicri:regionArea>
<wicri:noRegion>University of Texas Health Science Center at San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qiao, M" sort="Qiao, M" uniqKey="Qiao M" first="M" last="Qiao">M. Qiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio</wicri:regionArea>
<wicri:noRegion>University of Texas Health Science Center at San Antonio</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Greaves, D R" sort="Greaves, D R" uniqKey="Greaves D" first="D R" last="Greaves">D R Greaves</name>
<affiliation wicri:level="4">
<nlm:affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Sir William Dunn School of Pathology, University of Oxford, Oxford</wicri:regionArea>
<placeName>
<settlement type="city">Oxford</settlement>
<region type="country">Angleterre</region>
<region type="comté" nuts="2">Oxfordshire</region>
</placeName>
<orgName type="university">Université d'Oxford</orgName>
</affiliation>
</author>
<author>
<name sortKey="Asmis, R" sort="Asmis, R" uniqKey="Asmis R" first="R" last="Asmis">R. Asmis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, USA. Electronic address: asmis@uthscsa.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio</wicri:regionArea>
<wicri:noRegion>University of Texas Health Science Center at San Antonio</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Atherosclerosis</title>
<idno type="eISSN">1879-1484</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Aorta (enzymology)</term>
<term>Aorta (pathology)</term>
<term>Aortic Diseases (enzymology)</term>
<term>Aortic Diseases (genetics)</term>
<term>Aortic Diseases (pathology)</term>
<term>Apoptosis (MeSH)</term>
<term>Atherosclerosis (enzymology)</term>
<term>Atherosclerosis (genetics)</term>
<term>Atherosclerosis (pathology)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Macrophages, Peritoneal (enzymology)</term>
<term>Macrophages, Peritoneal (pathology)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>Mitochondria (enzymology)</term>
<term>Mitochondria (pathology)</term>
<term>Plaque, Atherosclerotic (MeSH)</term>
<term>Receptors, LDL (deficiency)</term>
<term>Receptors, LDL (genetics)</term>
<term>Severity of Illness Index (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Aorte (anatomopathologie)</term>
<term>Aorte (enzymologie)</term>
<term>Apoptose (MeSH)</term>
<term>Athérosclérose (anatomopathologie)</term>
<term>Athérosclérose (enzymologie)</term>
<term>Athérosclérose (génétique)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Indice de gravité de la maladie (MeSH)</term>
<term>Macrophages péritonéaux (anatomopathologie)</term>
<term>Macrophages péritonéaux (enzymologie)</term>
<term>Maladies de l'aorte (anatomopathologie)</term>
<term>Maladies de l'aorte (enzymologie)</term>
<term>Maladies de l'aorte (génétique)</term>
<term>Mitochondries (anatomopathologie)</term>
<term>Mitochondries (enzymologie)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Métabolisme énergétique (MeSH)</term>
<term>Plaque d'athérosclérose (MeSH)</term>
<term>Récepteurs aux lipoprotéines LDL (déficit)</term>
<term>Récepteurs aux lipoprotéines LDL (génétique)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Souris knockout (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Receptors, LDL</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Receptors, LDL</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Aorte</term>
<term>Athérosclérose</term>
<term>Macrophages péritonéaux</term>
<term>Maladies de l'aorte</term>
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Récepteurs aux lipoprotéines LDL</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Aorte</term>
<term>Athérosclérose</term>
<term>Macrophages péritonéaux</term>
<term>Maladies de l'aorte</term>
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Aorta</term>
<term>Aortic Diseases</term>
<term>Atherosclerosis</term>
<term>Macrophages, Peritoneal</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aortic Diseases</term>
<term>Atherosclerosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Athérosclérose</term>
<term>Glutarédoxines</term>
<term>Maladies de l'aorte</term>
<term>Récepteurs aux lipoprotéines LDL</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Aorta</term>
<term>Aortic Diseases</term>
<term>Atherosclerosis</term>
<term>Macrophages, Peritoneal</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Apoptosis</term>
<term>Cells, Cultured</term>
<term>Disease Models, Animal</term>
<term>Energy Metabolism</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Plaque, Atherosclerotic</term>
<term>Severity of Illness Index</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Apoptose</term>
<term>Cellules cultivées</term>
<term>Indice de gravité de la maladie</term>
<term>Modèles animaux de maladie humaine</term>
<term>Métabolisme énergétique</term>
<term>Plaque d'athérosclérose</term>
<term>Souris de lignée C57BL</term>
<term>Souris knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>AIMS</b>
</p>
<p>Reactive oxygen species (ROS)-mediated formation of mixed disulfides between critical cysteine residues in proteins and glutathione, a process referred to as protein S-glutathionylation, can lead to loss of enzymatic activity and protein degradation. Since mitochondria are a major source of ROS and a number of their proteins are susceptible to protein-S-glutathionylation, we examined if overexpression of mitochondrial thioltranferase glutaredoxin 2a (Grx2a) in macrophages of dyslipidemic atherosclerosis-prone mice would prevent mitochondrial dysfunction and protect against atherosclerotic lesion formation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS AND RESULTS</b>
</p>
<p>We generated transgenic Grx2aMac(LDLR-/-) mice, which overexpress Grx2a as an EGFP fusion protein under the control of the macrophage-specific CD68 promoter. Transgenic mice and wild type siblings were fed a high fat diet for 14 weeks at which time we assessed mitochondrial bioenergetic function in peritoneal macrophages and atherosclerotic lesion formation. Flow cytometry and Western blot analysis demonstrated transgene expression in blood monocytes and peritoneal macrophages isolated from Grx2aMac(LDLR-/-) mice, and fluorescence confocal microscopy studies confirmed that Grx2a expression was restricted to the mitochondria of monocytic cells. Live-cell bioenergetic measurements revealed impaired mitochondrial ATP turnover in macrophages isolated from Grx2aMac(LDLR-/-) mice compared to macrophages isolated from non-transgenic mice. However, despite impaired mitochondrial function in macrophages of Grx2aMac(LDLR-/-) mice, we observed no significant difference in the severity of atherosclerosis between wildtype and Grx2aMac(LDLR-/-) mice.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our findings suggest that increasing Grx2a activity in macrophage mitochondria disrupts mitochondrial respiration and ATP production, but without affecting the proatherogenic potential of macrophages. Our data suggest that macrophages are resistant against moderate mitochondrial dysfunction and rely on alternative pathways for ATP synthesis to support the energetic requirements.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25966442</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1484</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>241</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Atherosclerosis</Title>
<ISOAbbreviation>Atherosclerosis</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice.</ArticleTitle>
<Pagination>
<MedlinePgn>69-78</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.atherosclerosis.2015.04.805</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0021-9150(15)01023-0</ELocationID>
<Abstract>
<AbstractText Label="AIMS" NlmCategory="OBJECTIVE">Reactive oxygen species (ROS)-mediated formation of mixed disulfides between critical cysteine residues in proteins and glutathione, a process referred to as protein S-glutathionylation, can lead to loss of enzymatic activity and protein degradation. Since mitochondria are a major source of ROS and a number of their proteins are susceptible to protein-S-glutathionylation, we examined if overexpression of mitochondrial thioltranferase glutaredoxin 2a (Grx2a) in macrophages of dyslipidemic atherosclerosis-prone mice would prevent mitochondrial dysfunction and protect against atherosclerotic lesion formation.</AbstractText>
<AbstractText Label="METHODS AND RESULTS" NlmCategory="RESULTS">We generated transgenic Grx2aMac(LDLR-/-) mice, which overexpress Grx2a as an EGFP fusion protein under the control of the macrophage-specific CD68 promoter. Transgenic mice and wild type siblings were fed a high fat diet for 14 weeks at which time we assessed mitochondrial bioenergetic function in peritoneal macrophages and atherosclerotic lesion formation. Flow cytometry and Western blot analysis demonstrated transgene expression in blood monocytes and peritoneal macrophages isolated from Grx2aMac(LDLR-/-) mice, and fluorescence confocal microscopy studies confirmed that Grx2a expression was restricted to the mitochondria of monocytic cells. Live-cell bioenergetic measurements revealed impaired mitochondrial ATP turnover in macrophages isolated from Grx2aMac(LDLR-/-) mice compared to macrophages isolated from non-transgenic mice. However, despite impaired mitochondrial function in macrophages of Grx2aMac(LDLR-/-) mice, we observed no significant difference in the severity of atherosclerosis between wildtype and Grx2aMac(LDLR-/-) mice.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our findings suggest that increasing Grx2a activity in macrophage mitochondria disrupts mitochondrial respiration and ATP production, but without affecting the proatherogenic potential of macrophages. Our data suggest that macrophages are resistant against moderate mitochondrial dysfunction and rely on alternative pathways for ATP synthesis to support the energetic requirements.</AbstractText>
<CopyrightInformation>Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zamora</LastName>
<ForeName>D A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Trinity University, San Antonio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Downs</LastName>
<ForeName>K P</ForeName>
<Initials>KP</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ullevig</LastName>
<ForeName>S L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tavakoli</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>H S</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qiao</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Greaves</LastName>
<ForeName>D R</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Asmis</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, USA; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, USA. Electronic address: asmis@uthscsa.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL115858</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RG/10/15/28578</GrantID>
<Agency>British Heart Foundation</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>HL70963</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL007446</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL115858</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL070963</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Ireland</Country>
<MedlineTA>Atherosclerosis</MedlineTA>
<NlmUniqueID>0242543</NlmUniqueID>
<ISSNLinking>0021-9150</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516009">Glrx2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011973">Receptors, LDL</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001011" MajorTopicYN="N">Aorta</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001018" MajorTopicYN="N">Aortic Diseases</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050197" MajorTopicYN="N">Atherosclerosis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017737" MajorTopicYN="N">Macrophages, Peritoneal</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058226" MajorTopicYN="N">Plaque, Atherosclerotic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011973" MajorTopicYN="N">Receptors, LDL</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012720" MajorTopicYN="N">Severity of Illness Index</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Atherosclerosis</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin 2</Keyword>
<Keyword MajorTopicYN="N">Macrophage</Keyword>
<Keyword MajorTopicYN="N">Mitochondria</Keyword>
<Keyword MajorTopicYN="N">Reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">Thiols</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25966442</ArticleId>
<ArticleId IdType="pii">S0021-9150(15)01023-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.atherosclerosis.2015.04.805</ArticleId>
<ArticleId IdType="pmc">PMC4466159</ArticleId>
<ArticleId IdType="mid">NIHMS684888</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Sep 24;285(39):29951-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Mar 30;100(6):884-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2007 Jun;27(6):1375-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Sep 15;43(6):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2000 Oct 2;192(7):1001-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11015441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Aug 15;13(4):489-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20210649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 17;286(24):21865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2011 Nov;11(11):723-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21997792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):2108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Apr;39(4):3755-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21735102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharm Sci. 2012 Aug 15;46(5):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2803-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22991462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1714-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2012 Nov;53(5):744</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23230605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2012 Nov;53(5):745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23230606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Mar 22;288(12):8365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23335511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013;14(8):15212-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23887649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nucl Med. 2013 Sep;54(9):1661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23886729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2013 Oct;14(10):986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24048120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Nov;1830(11):4999-5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23872354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2014;2:44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24396728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2014 Jul;34(7):1514-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24812321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 23;289(21):14812-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2014 Oct 9;124(15):e33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25030063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Winter;2(4):811-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11213485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jan 25;277(4):2779-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1981 Nov;120(2):407-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7032915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1996 Nov 1;335(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1998 Nov 15;54(1):165-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9806844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Oct 6;1413(2):70-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2005 Apr;36(4):715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15746459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2005 May;45(5):847-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2005 Sep;25(9):1966-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15976323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2005 Dec;5(12):953-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Sep 1;41(5):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Oct;116(10):2767-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16964311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2008 Feb;118(2):789-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18188455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Jan;11(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Feb;1793(2):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2009 Nov;29(11):1779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19592463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Feb;1797(2):285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19925774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Jul 1;185(1):605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2007 Jan;117(1):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17200719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Oxfordshire</li>
</region>
<settlement>
<li>Oxford</li>
</settlement>
<orgName>
<li>Université d'Oxford</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Zamora, D A" sort="Zamora, D A" uniqKey="Zamora D" first="D A" last="Zamora">D A Zamora</name>
</noRegion>
<name sortKey="Asmis, R" sort="Asmis, R" uniqKey="Asmis R" first="R" last="Asmis">R. Asmis</name>
<name sortKey="Downs, K P" sort="Downs, K P" uniqKey="Downs K" first="K P" last="Downs">K P Downs</name>
<name sortKey="Kim, H S" sort="Kim, H S" uniqKey="Kim H" first="H S" last="Kim">H S Kim</name>
<name sortKey="Qiao, M" sort="Qiao, M" uniqKey="Qiao M" first="M" last="Qiao">M. Qiao</name>
<name sortKey="Tavakoli, S" sort="Tavakoli, S" uniqKey="Tavakoli S" first="S" last="Tavakoli">S. Tavakoli</name>
<name sortKey="Ullevig, S L" sort="Ullevig, S L" uniqKey="Ullevig S" first="S L" last="Ullevig">S L Ullevig</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Greaves, D R" sort="Greaves, D R" uniqKey="Greaves D" first="D R" last="Greaves">D R Greaves</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000550 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000550 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25966442
   |texte=   Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25966442" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020